Telegram Group & Telegram Channel
Forwarded from Machinelearning
⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1655
Create:
Last Update:

⭐️ «Open-Source Handwritten Signature Detection Model» - отличная статья, в которой подробно показно решение прикладной ML задачи.

Это подробный гайд, где описан процесс разработки приложения для автоматического обнаружения рукописных подписей в документах.

Автор протестировал все доступные модели YOLO для данной задачи и опубликовал результаты. В итоге получился очень годный гайд, со множеством технических деталей.

🟡Подготовка данных: использование двух публичных датасетов (Tobacco800 и Signatures-XC8UP) с последующей предобработкой и аугментацией изображений.

🟡Архитектурное сравнение: в статье приводится детальный анализ современных алгоритмов обнаружения объектов – от семейства YOLO до трансформерных моделей (DETR, RT-DETR, YOLOS).

🟡Оптимизация гиперпараметров:
Сравнительный анализ архитектур показал, что YOLOv8 - обеспечивает идеальный баланс между скоростью и точностью для данной задачи, достигая 94,74 % точности и 89,72 % после оптимизации гиперпараметров с помощью Optuna.

🟡Развёртывание: модель оптимизирована для работы с Triton Inference Server и OpenVINO, что обеспечивает быстрый инференс на CPU и GPU (до 7.657 мс на T4)

🟡 Результаты экспериментов:
Достигнута высокая точность распознавания: mAP@50 – 94.50%, mAP@50-95 – 67.35%.

Итоговая модель демонстрирует сбалансированное соотношение между точностью, скоростью инференса и экономичностью ресурсов.

Статья демонстрирует, как грамотное сочетание современных архитектур обнаружения объектов, тщательная подготовка данных и оптимизация гиперпараметров позволяет создать эффективное и готовое к развёртыванию решение, очень рекомендуем прочесть ее полностью.
А здесь можно почитать описание семейства моделей Yolo.

🟡 Читать: https://huggingface.co/blog/samuellimabraz/signature-detection-model

#yolo #guide #detection #ml

BY Machine learning Interview







Share with your friend now:
tg-me.com/machinelearning_interview/1655

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Machine learning Interview from jp


Telegram Machine learning Interview
FROM USA